PKB signaling and atrogene expression in skeletal muscle of aged mice.
نویسندگان
چکیده
The purpose of this study was to determine if PKB signaling is decreased and contractile protein degradation is increased in extensor digitorum longus (EDL) and soleus (SOL) muscles from middle-aged (MA) and aged (AG) mice. We also examined the effect of age on atrogene expression in quadriceps muscle. PKB activity, as assessed by Thr(308) and Ser(473) phosphorylation, was significantly higher in EDL and SOL muscles from AG than MA mice. The age-related increase in PKB activity appears to be due to an increase in expression of the kinase, as PKB-α and PKB-β levels were significantly higher in EDL and SOL muscles from AG than MA mice. The phosphorylation of forkhead box 3a (FOXO3a) on Thr(32), a PKB target, was significantly higher in EDL muscles from AG than MA mice. The rate of contractile protein degradation was similar in EDL and SOL muscles from AG and MA mice. Atrogin-1 and muscle-specific RING finger protein 1 (MuRF-1) mRNA levels did not change in muscles from AG compared with MA mice, indicating that ubiquitin-proteasome proteolysis does not contribute to sarcopenia. A significant decrease in Bcl-2 and 19-kDa interacting protein 3 (Bnip3) and GABA receptor-associated protein 1 (Gabarap1) mRNA was observed in muscles from AG compared with MA mice, which may contribute to age-related contractile dysfunction. In conclusion, the mechanisms responsible for sarcopenia are distinct from experimental models of atrophy and do not involve atrogin-1 and MuRF-1 or enhanced proteolysis. Finally, a decline in autophagy-related gene expression may provide a novel mechanism for impaired contractile function and muscle metabolism with advancing age.
منابع مشابه
Ursolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملInhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy
BACKGROUND Interleukin-6 (IL-6) is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear. METHODS Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB) and vitamin D to the mice and examined the effects on atrog...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملComparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols
Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...
متن کاملPolyphenols prevent clinorotation-induced expression of atrogenes in mouse C2C12 skeletal myotubes.
Oxidative stress is a key factor in stimulating the expression of atrogenes, which are muscle atrophy-related ubiquitin ligases, in skeletal muscle, and it induces muscle atrophy during unloading. However, the effects of antioxidative nutrients on atrogene expression have not been demonstrated. We report on the inhibitory effects of polyphenols, such as epicatechin (EC), epicatechin gallate (EC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2011